
157

7
Smart Pointers

Hecatombs of code and rivers of ink have been dedicated to smart pointers by program-

mers and writers around the world. Perhaps the most popular, intricate, and powerful

C�� idiom, smart pointers are interesting in that they combine many syntactic and se-

mantic issues. This chapter discusses smart pointers, from their simplest aspects to their

most complex ones and from the most obvious errors in implementing them to the subtlest

ones—some of which also happen to be the most gruesome.

In brief, smart pointers are C�� objects that simulate simple pointers by implement-

ing operator-> and the unary operator*. In addition to sporting pointer syntax and

semantics, smart pointers often perform useful tasks—such as memory management or

locking—under the covers, thus freeing the application from carefully managing the life-

time of pointed-to objects.

This chapter not only discusses smart pointers but also implements a SmartPtr class

template. SmartPtr is designed around policies (see Chapter 1), and the result is a smart

pointer that has the exact levels of safety, efficiency, and ease of use that you want.

After reading this chapter, you will be an expert in smart pointer issues such as the

following:

• The advantages and disadvantages of smart pointers

• Ownership management strategies

• Implicit conversions

• Tests and comparisons

• Multithreading issues

This chapter implements a generic SmartPtr class template. Each section presents one

implementation issue in isolation. At the end, the implementation puts all the pieces to-

gether. In addition to understanding the design rationale of SmartPtr, you will know how

to use, tweak, and extend it.

7.1 Smart Pointers 101

So what’s a smart pointer? A smart pointer is a C�� class that mimics a regular pointer

in syntax and some semantics, but it does more. Because smart pointers to different type

07-A1568 01/23/2001 12:38 PM Page 157

158 Smart Pointers Chapter 7

of objects tend to have a lot of code in common, almost all good-quality smart pointers in

existence are templated by the pointee type, as you can see in the following code:

template <class T>
class SmartPtr
{
public:

explicit SmartPtr(T* pointee) : pointee_(pointee);
SmartPtr& operator=(const SmartPtr& other);
~SmartPtr();
T& operator*() const
{

...
return *pointee_;

}
T* operator->() const
{

...
return pointee_;

}
private:

T* pointee_;
...

};

SmartPtr<T> aggregates a pointer to T in its member variable pointee_. That’s what

most smart pointers do. In some cases, a smart pointer might aggregate some handles to

data and compute the pointer on the fly.

The two operators give SmartPtrToSomething pointer-like syntax and semantics. That

is, you can write

class Widget
{
public:

void Fun();
};

SmartPtr<Widget> sp(new Something);
sp->Fun();
(*sp).Fun();

Aside from the definition of sp, nothing reveals it as not being a pointer. This is the mantra

of smart pointers: You can replace pointer definitions with smart pointer definitions with-

out incurring major changes to your application’s code. You thus get extra goodies with

ease. Minimizing code changes is very appealing and vital for getting large applications to

use smart pointers. As you will soon see, however, smart pointers are not a free lunch.

7.2 The Deal

But what’s the deal with smart pointers? you might ask. What do you gain by replacing

simple pointers with smart pointers? The explanation is simple. Smart pointers have value

semantics, whereas some simple pointers do not.

07-A1568 01/23/2001 12:38 PM Page 158

Section 7.2 The Deal 159

An object with value semantics is an object that you can copy and assign to. Type int is

the perfect example of a first-class object. You can create, copy, and change integer values

freely. A pointer that you use to iterate in a buffer also has value semantics—you initialize

it to point to the beginning of the buffer, and you bump it until you reach the end. Along

the way, you can copy its value to other variables to hold temporary results.

With pointers that hold values allocated with new, however, the story is very different.

Once you have written

Widget* p = new Widget;

the variable p not only points to, but also owns, the memory allocated for the Widget object.

This is because later you must issue delete p to ensure that the Widget object is destroyed

and its memory is released. If in the line after the line just shown you write

p = 0; // assign something else to p

you lose ownership of the object previously pointed to by p, and you have no chance at all

to get a grip on it again. You have a resource leak, and resource leaks never help.

Furthermore, when you copy p into another variable, the compiler does not automati-

cally manage the ownership of the memory to which the pointer points. All you get is two

raw pointers pointing to the same object, and you have to track them even more carefully

because double deletions are even more catastrophic than no deletion. Consequently,

pointers to allocated objects do not have value semantics—you cannot copy and assign to

them at your will.

Smart pointers can be of great help in this area. Most smart pointers offer ownership
management in addition to pointer-like behavior. Smart pointers can figure out how own-

ership evolves, and their destructors can release the memory according to a well-defined

strategy. Many smart pointers hold enough information to take full initiative in releasing

the pointed-to object.

Smart pointers may manage ownership in various ways, each appropriate to a category

of problems. Some smart pointers transfer ownership automatically: After you copy a

smart pointer to an object, the source smart pointer becomes null, and the destination

points to (and holds ownership of) the object. This is the behavior implemented by the

standard-provided std::auto_ptr. Other smart pointers implement reference counting:

They track the total count of smart pointers that point to the same object, and when this

count goes down to zero, they delete the pointed-to object. Finally, some others duplicate

their pointed-to object whenever you copy them.

In short, in the smart pointers’ world, ownership is an important topic. By providing

ownership management, smart pointers are able to support integrity guarantees and full

value semantics. Because ownership has much to do with constructing, copying, and de-

stroying smart pointers, it’s easy to figure out that these are the most vital functions of a

smart pointer.

The following few sections discuss various aspects of smart pointer design and imple-

mentation. The goal is to render smart pointers as compatible with raw pointers as pos-

sible, but not closer. It’s a contradictory goal: After all, if your smart pointers behave exactly
like dumb pointers, they are dumb pointers.

07-A1568 01/23/2001 12:38 PM Page 159

160 Smart Pointers Chapter 7

In implementing compatibility between smart pointers and raw pointers, there is a thin

line between nicely filling compatibility checklists and paving the way toward chaos. You

will find that adding seemingly worthwhile features might expose the clients to costly

risks. Much of the craft of implementing good smart pointers consists of carefully balanc-

ing their set of features.

7.3 Smart Pointers’ Storage

To start, let’s ask a fundamental question about smart pointers. Is pointee_’s type neces-

sarily T*? If not, what else could it be? In generic programming, you should always ask

yourself questions like these. Each type that’s hardcoded in a piece of generic code de-

creases the genericity of the code. Hardcoded types are to generic code what magic con-

stants are to regular code.

In several situations, it is worthwhile to allow customizing the pointee type. One situa-

tion is when you deal with nonstandard pointer modifiers. In the 16-bit Intel 80x86 days,

you could qualify pointers with modifiers like __near, __far, and __huge. Other seg-

mented memory architectures use similar modifiers.

Another situation is when you want to layer smart pointers. What if you have a Legacy-
SmartPtr<T> smart pointer implemented by someone else, and you want to enhance

it? Would you derive from it? That’s a risky decision. It’s better to wrap the legacy smart

pointer into a smart pointer of your own. This is possible because the inner smart pointer

supports pointer syntax. From the outer smart pointer’s viewpoint, the pointee type is not

T* but LegacySmartPtr<T>.
There are interesting applications of smart pointer layering, mainly because of the

mechanics of operator->. When you apply operator-> to a type that’s not a built-in

pointer, the compiler does an interesting thing. After looking up and applying the user-

defined operator-> to that type, it applies operator-> again to the result. The compiler

keeps doing this recursively until it reaches a pointer to a built-in type, and only then pro-

ceeds with member access. It follows that a smart pointer’s operator-> does not have to

return a pointer. It can return an object that in turn implements operator->, without chang-

ing the use syntax.

This leads to a very interesting idiom: pre- and postfunction calls (Stroustrup 2000). If

you return an object of type PointerType by value from operator->, the sequence of exe-

cution is as follows:

1. Constructor of PointerType
2. PointerType::operator-> called; likely returns a pointer to an object of type

PointeeType
3. Member access for PointeeType—likely a function call

4. Destructor of PointerType

In a nutshell, you have a nifty way of implementing locked function calls. This idiom has

broad uses with multithreading and locked resource access. You can have PointerType’s

constructor lock the resource, and then you can access the resource; finally, Pointer Type’s

destructor unlocks the resource.

The generalization doesn’t stop here. The syntax-oriented “pointer” part might some-

07-A1568 01/23/2001 12:38 PM Page 160

Section 7.4 Smart Pointer Member Functions 161

times become dim in comparison with the powerful resource management techniques that

are included in smart pointers. It follows that, in rare cases, smart pointers could drop the

pointer syntax. An object that does not define operator-> and operator* violates the

definition of a smart pointer, but there are objects that do deserve smart pointer–like treat-

ment, although they are not, strictly speaking, smart pointers.

Look at real-world APIs and applications. Many operating systems foster handles as

accessors to certain internal resources, such as windows, mutexes, or devices. Handles are

intentionally obfuscated pointers; one of their purposes is to prevent their users from ma-

nipulating critical operating system resources directly. Most of the time, handles are inte-

gral values that are indices in a hidden table of pointers. The table provides the additional

level of indirection that protects the inner system from the application programmers. Al-

though they don’t provide an operator->, handles resemble pointers in semantics and in

the way they are managed.

For such a smart resource, it does not make sense to provide operator-> or

operator*. However, you do take advantage of all the resource management techniques

that are specific to smart pointers.

To generalize the type universe of smart pointers, we distinguish three potentially dis-

tinct types in a smart pointer:

• The storage type. This is the type of pointee_. By “default”—in regular smart pointers—

it is a raw pointer.

• The pointer type. This is the type returned by operator->. It can be different from the

storage type if you want to return a proxy object instead of just a pointer. (You will find

an example of using proxy objects later in this chapter.)

• The reference type. This is the type returned by operator*.

It would be useful if SmartPtr supported this generalization in a flexible way. Thus, the

three types mentioned here ought to be abstracted in a policy called Storage.

In conclusion, smart pointers can, and should, generalize their pointee type. To do

this, SmartPtr abstracts three types in a Storage policy: the stored type, the pointer type,

and the reference type. Not all types necessarily make sense for a given SmartPtr instanti-

ation. Therefore, in rare cases (handles), a policy might disable access to operator-> or

operator* or both.

7.4 Smart Pointer Member Functions

Many existing smart pointer implementations allow operations through member func-

tions, such as Get for accessing the pointee object, Set for changing it, and Release for

taking over ownership. This is the obvious and natural way of encapsulating SmartPtr’s

functionality.

However, experience has proven that member functions are not very suitable for smart

pointers. The reason is that the interaction between member function calls for the smart

pointer for the pointed-to object can be extremely confusing.

Suppose, for instance, that you have a Printer class with member functions such as

Acquire and Release. With Acquire you take ownership of the printer so that no other

application prints to it, and with Release you relinquish ownership. As you use a smart

07-A1568 01/23/2001 12:38 PM Page 161

162 Smart Pointers Chapter 7

pointer to Printer, you may notice a strange syntactical closeness to things that are very

far apart semantically.

SmartPtr<Printer> spRes = ...;
spRes->Acquire(); // acquire the printer
... print a document ...
spRes->Release(); // release the printer
spRes.Release(); // release the pointer to the printer

The user of SmartPtr now has access to two totally different worlds: the world of the

pointed-to object members and the world of the smart pointer members. A matter of a dot

or an arrow thinly separates the two worlds.

On the face of it, C�� does force you routinely to observe certain slight differences in

syntax. A Pascal programmer learning C�� might even feel that the slight syntactic dif-

ference between & and && is an abomination. Yet C�� programmers don’t even blink at it.

They are trained by habit to distinguish such syntax matters easily.

However, smart pointer member functions defeat training by habit. Raw pointers don’t

have member functions, so C�� programmers’ eyes are not habituated to detect and

distinguish dot calls from arrow calls. The compiler does a good job at that: If you use a

dot after a raw pointer, the compiler will yield an error. Therefore, it is easy to imagine, and

experience proves, that even seasoned C�� programmers find it extremely disturbing

that both sp.Release() and sp->Release() compile flag-free but do very different things.

The cure is simple: A smart pointer should not use member functions. SmartPtr uses only

nonmember functions. These functions become friends of the smart pointer class.

Overloaded functions can be just as confusing as member functions of smart pointers,

but there is an important difference. C�� programmers already use overloaded functions.

Overloading is an important part of the C�� language and is used routinely in library and

application development. This means that C�� programmers do pay attention to differ-

ences in function call syntax—such as Release(*sp) versus Release(sp)—in writing and

reviewing code.

The only functions that necessarily remain members of SmartPtr are the constructors,

the destructor, operator=, operator->, and unary operator*. All other operations of

SmartPtr are provided through named nonmember functions.

For reasons of clarity, SmartPtr does not have any named member functions. The only

functions that access the pointee object are GetImpl, GetImplRef, Reset, and Release,

which are defined at namespace level.

template <class T> T* GetImpl(SmartPtr<T>& sp);
template <class T> T*& GetImplRef(SmartPtr<T>& sp);
template <class T> void Reset(SmartPtr<T>& sp, T* source);
template <class T> void Release(SmartPtr<T>& sp, T*& destination);

• GetImpl returns the pointer object stored by SmartPtr.

• GetImplRef returns a reference to the pointer object stored by SmartPtr. GetImplRef
allows you to change the underlying pointer, so it requires extreme care in use.

• Reset resets the underlying pointer to another value, releasing the previous one.

• Release releases ownership of the smart pointer, giving its user the responsibility of

managing the pointee object’s lifetime.

07-A1568 01/23/2001 12:38 PM Page 162

Section 7.5 Ownership-Handling Strategies 163

The actual declarations of these four functions in Loki are slightly more elaborate. They

don’t assume that the type of the pointer object stored by SmartPtr is T*. As discussed

in Section 7.3, the Storage policy defines the pointer type. Most of the time, it’s a straight

pointer, except for exotic implementations of Storage, when it might be a handle or an elab-

orate type.

7.5 Ownership-Handling Strategies

Ownership handling is often the most important raison d’être of smart pointers. Usually,

from their clients’ viewpoint, smart pointers own the objects to which they point. A smart

pointer is a first-class value that takes care of deleting the pointed-to object under the cov-

ers. The client can intervene in the pointee object’s lifetime by issuing calls to helper man-

agement functions.

For implementing self-ownership, smart pointers must carefully track the pointee ob-

ject, especially during copying, assignment, and destruction. Such tracking brings some

overhead in space, time, or both. An application should settle on the strategy that best fits

the problem at hand and does not cost too much.

The following subsections discuss the most popular ownership management strategies

and how SmartPtr implements them.

7.5.1 Deep Copy

The simplest strategy applicable is to copy the pointee object whenever you copy the smart

pointer. If you ensure this, there is only one smart pointer for each pointee object. There-

fore, the smart pointer’s destructor can safely delete the pointee object. Figure 7.1 depicts

the state of affairs if you use smart pointers with deep copy.

At first glance, the deep copy strategy sounds rather dull. It seems like the smart pointer

does not add any value over regular C�� value semantics. Why would you make the effort

of using a smart pointer, when simple pass by value of the pointee object works just as well?

The answer is support for polymorphism. Smart pointers are vehicles for transporting

polymorphic objects safely. You hold a smart pointer to a base class, which might actually

point to a derived class. When you copy the smart pointer, you want to copy its polymor-

phic behavior, too. It’s interesting that you don’t exactly know what behavior and state you

are dealing with, but you certainly need to duplicate that behavior and state.

Because deep copy most often deals with polymorphic objects, the following naive im-

plementation of the copy constructor is wrong:

template <class T>
class SmartPtr
{
public:

SmartPtr(const SmartPtr& other)
: pointee_(new T(*other.pointee_))
{
}
...

};

07-A1568 01/23/2001 12:38 PM Page 163

164 Smart Pointers Chapter 7

pointee_

pointee_

pointee_

smartPtr1

smartPtr2

smartPtr3

Figure 7.1: Memory layout for smart pointers with eager copy

Say you copy an object of type SmartPtr<Widget>. If other points to an instance of a class

ExtendedWidget that derives from Widget, the copy constructor above copies only the

Widget part of the ExtendedWidget object. This phenomenon is known as slicing— only

the Widget “slice” of the object of the presumably larger type ExtendedWidget gets copied.

Slicing is most often undesirable. It is a pity that C�� allows slicing so easily—a simple

call by value slices objects without any warning.

Chapter 8 discusses cloning in depth. As shown there, the classic way of obtaining a

polymorphic clone for a hierarchy is to define a virtual Clone function and implement it as

follows:

class AbstractBase
{

...
virtual Base* Clone() = 0;

};

class Concrete : public AbstractBase
{

...
virtual Base* Clone()
{

return new Concrete(*this);
}

};

The Clone implementation must follow the same pattern in all derived classes; in spite of

its repetitive structure, there is no reasonable way to automate defining the Clone member

function (beyond macros, that is).

A generic smart pointer cannot count on knowing the exact name of the cloning

member function—maybe it’s clone, or maybe MakeCopy. Therefore, the most flexible ap-

proach is to parameterize SmartPtr with a policy that addresses cloning.

07-A1568 01/23/2001 12:38 PM Page 164

Section 7.5 Ownership-Handling Strategies 165

7.5.2 Copy on Write

Copy on write (COW, as fondly called by its fans) is an optimization technique that avoids

unnecessary object copying. The idea that underlies COW is to clone the pointee object at

the first attempt of modification; until then, several pointers can share the same object.

Smart pointers, however, are not the best place to implement COW, because smart

pointers cannot differentiate between calls to const and non-const member functions of

the pointee object. Here is an example:

template <class T>
class SmartPtr
{
public:

T* operator->() { return pointee_; }
...

};

class Foo
{
public:

void ConstFun() const;
void NonConstFun();

};

...
SmartPtr<Foo> sp;
sp->ConstFun(); // invokes operator->, then ConstFun
sp->NonConstFun(); // invokes operator->, then NonConstFun

The same operator-> gets invoked for both functions called; therefore, the smart pointer

does not have any clue whether to make the COW or not. Function invocations for the

pointee object happen somewhere beyond the reach of the smart pointer. (Section 7.11 ex-

plains how const interacts with smart pointers and the objects they point to.)

In conclusion, COW is effective mostly as an implementation optimization for full-

featured classes. Smart pointers are at too low a level to implement COW semantics ef-

fectively. Of course, smart pointers can be a good building block in implementing COW for

a class.

The SmartPtr implementation in this chapter does not provide support for COW.

7.5.3 Reference Counting

Reference counting is the most popular ownership strategy used with smart pointers. Ref-

erence counting tracks the number of smart pointers that point to the same object. When

that number goes to zero, the pointee object is deleted. This strategy works very well if you

don’t break certain rules—for instance, you should not keep dumb pointers and smart

pointers to the same object.

The actual counter must be shared among smart pointer objects, leading to the structure

07-A1568 01/23/2001 12:38 PM Page 165

166 Smart Pointers Chapter 7

Object

3

pRefCount_

pointee_

pRefCount_

pointee_

pRefCount_

pointee_

Figure 7.2: Three reference-counted smart pointers pointing to the same object

Object

pointee_

pointee_

pointee_

refCount_ = 3

pObj_

SPImpl

Figure 7.3: An alternate structure of reference-counted pointers

depicted in Figure 7.2. Each smart pointer holds a pointer to the reference counter (pRef-
Count_ in Figure 7.2) in addition to the pointer to the object itself. This usually doubles the

size of the smart pointer, which may or may not be an acceptable overhead, depending on

your needs and constraints.

There is another, subtler, overhead issue. Reference-counted smart pointers must store

the reference counter on the free store. The problem is that in many implementations,

the default C�� free store allocator is remarkably slow and wasteful of space when it

comes to allocating small objects, as discussed in Chapter 4. (Obviously, the reference

count, typically occupying 4 bytes, does qualify as a small object.) The overhead in speed

stems from slow algorithms in finding available chunks of memory, and the overhead in

size is incurred by the bookkeeping information that the allocator holds for each chunk.

The relative size overhead can be partially mitigated by holding the pointer and the ref-

erence count together, as in Figure 7.3. The structure in Figure 7.3 reduces the size of the

smart pointer back to that of a pointer, but at the expense of access speed: The pointee ob-

07-A1568 01/23/2001 12:38 PM Page 166

Section 7.5 Ownership-Handling Strategies 167

pointee_

pointee_

pointee_
refCount_ = 3

Object

Figure 7.4: Intrusive reference counting

1Risto Lankinen described the reference-linking mechanism on Usenet in November 1995.

ject is an extra indirection level away. This is a considerable drawback because you typi-

cally use a smart pointer several times, whereas you obviously construct and destroy it

only once.

The most efficient solution is to hold the reference counter in the pointee object itself, as

shown in Figure 7.4. This way SmartPtr is just the size of a pointer, and there is no extra

overhead at all. This technique is known as intrusive reference counting, because the refer-

ence count is an “intruder” in the pointee—it semantically belongs to the smart pointer.

The name also gives a hint about the Achilles’ heel of the technique: You must design up

front or modify the pointee class to support reference counting.

A generic smart pointer should use intrusive reference counting where available and

implement a nonintrusive reference counting scheme as an acceptable alternative. For

implementing nonintrusive reference counting, the small-object allocator presented in

Chapter 4 can help a great deal. The SmartPtr implementation using nonintrusive refer-

ence counting leverages the small-object allocator, thus slashing the performance overhead

caused by the reference counter.

7.5.4 Reference Linking

Reference linking relies on the observation that you don’t really need the actual count of

smart pointer objects pointing to one pointee object; you only need to detect when that

count goes down to zero. This leads to the idea of keeping an “ownership list,” as shown

in Figure 7.5.1

All SmartPtr objects that point to a given pointee form a doubly linked list. When you

create a new SmartPtr from an existing SmartPtr, the new object is appended to the list;

SmartPtr’s destructor takes care of removing the destroyed object from the list. When the

list becomes empty, the pointee object is deleted.

The doubly linked list structure fits reference tracking like a glove. You cannot use a

singly linked list because removals from such a list take linear time. You cannot use a vec-

tor because the SmartPtr objects are not contiguous (and removals from vectors take linear

time anyway). You need a structure sporting constant-time append, constant-time remove,

and constant-time empty detection. This bill is fit precisely and exclusively by doubly

linked lists.

07-A1568 01/23/2001 12:38 PM Page 167

168 Smart Pointers Chapter 7

prev_ next_

pointee_

Object

prev_ next_

pointee_

prev_ next_

pointee_

Figure 7.5: Reference linking in action

In a reference-linking implementation, each SmartPtr object holds two extra pointers—

one to the next element and one to the previous element.

The advantage of reference linking over reference counting is that the former does not

use extra free store, which makes it more reliable: Creating a reference-linked smart pointer

cannot fail. The disadvantage is that reference linking needs more memory for its book-

keeping (three pointers versus only one pointer plus one integer). Also, reference counting

should be a bit speedier—when you copy smart pointers, only an indirection and an in-

crement are needed. The list management is slightly more elaborate. In conclusion, you

should use reference linking only when the free store is scarce. Otherwise, prefer reference

counting.

To wrap up the discussion on reference count management strategies, let’s note a sig-

nificant disadvantage that they have. Reference management—be it counting or linking—

is victim to the resource leak known as cyclic reference. Imagine an object A holds a smart

pointer to an object B. Also, object B holds a smart pointer to A. These two objects form a

cyclic reference; even though you don’t use any of them anymore, they use each other. The

reference management strategy cannot detect such cyclic references, and the two objects

remain allocated forever. The cycles can span multiple objects, closing circles that often

reveal unexpected—and very hard to debug—dependencies.

In spite of this, reference management is a robust, speedy ownership-handling strategy.

If used with precaution, reference management makes application development signifi-

cantly easier.

7.5.5 Destructive Copy

Destructive copy does exactly what you think it does: During copying, it destroys the ob-

ject being copied. In the case of smart pointers, destructive copy destroys the source smart

07-A1568 01/23/2001 12:38 PM Page 168

Section 7.5 Ownership-Handling Strategies 169

pointer by taking its pointee object and passing it to the destination smart pointer. The

std::auto_ptr class template features destructive copy.

In addition to being suggestive about the action taken, “destructive” also vividly de-

scribes the dangers associated with this strategy. Misusing destructive copy may have

destructive effects on your program data, your program correctness, and your brain cells.

Smart pointers may use destructive copy to ensure that at any time there is only one

smart pointer pointing to a given object. During the copying or assignment of a smart

pointer to another, the “living” pointer is passed to the destination of the copy, and source’s

pointee_ becomes zero. The following code illustrates a copy constructor and an assign-

ment operator of a simple SmartPtr featuring destructive copy.

template <class T>
class SmartPtr
{
public:

SmartPtr(SmartPtr& src)
{

pointee_ = src.pointee_;
src.pointee_ = 0;

}
SmartPtr& operator=(SmartPtr& src)
{

if (this != &src)
{

delete pointee_;
pointee_ = src.pointee_;
src.pointee_ = 0;

}
return *this;

}
...

};

C�� etiquette calls for the right-hand side of the copy constructor and the assignment

operator to be a reference to a const object. Classes that foster destructive copy break this

convention for obvious reasons. Because etiquette exists for a reason, you should expect

negative consequences if you break it. Indeed, here it is:

void Display(SmartPtr<Something> sp);
...
SmartPtr<Something> sp(new Something);
Display(sp); // sinks sp

Although Display means no harm to its argument (accepts it by value), it acts like a mael-

strom of smart pointers: It sinks any smart pointer passed to it. After calling Display(sp),

sp holds the null pointer.

Because they do not support value semantics, smart pointers with destructive copy can-

not be stored in containers and in general must be handled with almost as much care as

raw pointers.

The ability to store smart pointers in a container is very important. Containers of raw

07-A1568 01/23/2001 12:38 PM Page 169

170 Smart Pointers Chapter 7

2 Invented by Greg Colvin and Bill Gibbons for std::auto_ptr.
3Unary operator& is to differentiate it from binary operator&, which is the bitwise AND operator.

pointers make manual ownership management tricky, so many containers of pointers can

use smart pointers to good advantage. Smart pointers with destructive copy, however, do

not mix with containers.

On the bright side, smart pointers with destructive copy have significant advantages:

• They incur almost no overhead.

• They are good at enforcing ownership transfer semantics. In this case, you use the

“maelstrom effect” described earlier to your advantage: You make it clear that your

function takes over the passed-in pointer.

• They are good as return values from functions. If the smart pointer implementation uses

a certain trick,2 you can return smart pointers with destructive copy from functions.

This way, you can be sure that the pointee object gets destroyed if the caller doesn’t use

the return value.

• They are excellent as stack variables in functions with multiple return paths. You don’t

have to remember to delete the pointee object manually—the smart pointer takes care

of this for you.

The destructive copy strategy is used by the standard-provided std::auto_ptr. This

brings destructive copy another important advantage:

• Smart pointers with destructive copy semantics are the only smart pointers that the

standard provides, which means that many programmers will get used to their behav-

ior sooner or later.

For these reasons, the SmartPtr implementation should provide optional support for de-

structive copy semantics.

Smart pointers use various ownership semantics, each having different trade-offs. The

most important techniques are deep copy, reference counting, reference linking, and de-

structive copy. SmartPtr implements all these strategies through an Ownership policy, al-

lowing its users to choose the one that best fits an application’s needs. The default strategy

is reference counting.

7.6 The Address-of Operator

In striving to make smart pointers as indistinguishable as possible from their native coun-

terparts, designers stumbled upon an obscure operator that is on the list of overloadable

operators: unary operator&, the address-of operator.3
An implementer of smart pointers might choose to overload the address-of operator

like this:

template <class T>
class SmartPtr
{
public:

07-A1568 01/23/2001 12:38 PM Page 170

Section 7.7 Implicit Conversion to Raw Pointer Type 171

T** operator&()
{

return &pointee_;
}
...

};

After all, if a smart pointer is to simulate a pointer, then its address must be substitutable

for the address of a regular pointer. This overload makes code like the following possible:

void Fun(Widget** pWidget);
...
SmartPtr<Widget> spWidget(...);
Fun(&spWidget); // okay, invokes operator* and obtains a

// pointer to pointer to Widget

It seems very desirable to have such an accurate compatibility between smart pointers

and dumb pointers, but overloading the unary operator& is one of those clever tricks that

can do more harm than good. There are two reasons why overloading unary operator& is

not too good an idea.

One reason is that exposing the address of the pointed-to object implies giving up any

automatic ownership management. When a client freely accesses the address of the raw

pointer, any helper structures that the smart pointer holds, such as reference counts, be-

come invalid for all purposes. While the client deals directly with the address of the raw

pointer, the smart pointer is completely unconscious.

The second reason, a more pragmatic one, is that overloading unary operator& makes

the smart pointer unusable with STL containers. Actually, overloading unary operator&
for a type pretty much makes generic programming impossible for that type, because the

address of an object is too fundamental a property to play with naively. Most generic code

assumes that applying & to an object of type T returns an object of type T*—you see, ad-

dress-of is a fundamental concept. If you defy this concept, generic code behaves strangely

either at compile time or—worse—at runtime.

Thus, it is not recommended to overload unary operator& for smart pointers, and for

any objects in general. SmartPtr does not overload unary operator&.

7.7 Implicit Conversion to Raw Pointer Type

Consider this code:

void Fun(Something* p);
...
SmartPtr<Something> sp(new Something);
Fun(sp); // OK or error?

Should this code compile or not? Following the “maximum compatibility” line of thought,

the answer is yes.

07-A1568 01/23/2001 12:38 PM Page 171

172 Smart Pointers Chapter 7

Technically, it is very simple to render the previous code compilable by introducing a

user-defined conversion, like so:

template <class T>
class SmartPtr
{
public:

operator T*() // user-defined conversion to T*
{

return pointee_;
}
...

};

However, this is not the end of the story.

User-defined conversions in C�� have an interesting history. Back in the 1980s, when

user-defined conversions were introduced, most programmers considered them a great

invention. User-defined conversions promised a more unified type system, expressive se-

mantics, and the ability to define new types that were indistinguishable from built-in ones.

With time, however, user-defined conversions revealed themselves as awkward and po-

tentially dangerous. They might become dangerous especially when they expose handles

to internal data (Meyers 1998a, Item 29), which is precisely the case with the operator T*
in the previous code. That’s why you should think carefully before allowing automatic con-

versions for the smart pointers you design.

One potential danger comes inherently from giving the user unattended access to the

raw pointer that the smart pointer wraps. Passing the raw pointer around defeats the inner

workings of the smart pointer. Once unleashed from the confines of its wrapper, the raw

pointer can easily become a threat to program sanity again, just as it was before introduc-

ing any smart pointers at all.

Another danger is that user-defined conversions pop up unexpectedly, even when you

don’t need them. Consider the following code:

SmartPtr<Something> sp;
...
// A gross semantic error
// However, it goes undetected at compile time
delete sp;

The compiler matches operator delete with the user-defined conversion to T*. At runtime,

operator T* is called, and delete is applied to the result of it. This is certainly not what you

want to do to a smart pointer, because it is supposed to manage ownership itself. An extra

unwitting delete call throws out the window all the careful ownership management that

the smart pointer performs under the covers.

There are quite a few ways to prevent the delete call from compiling. Some of them are

very ingenious (Meyers 1996). One that’s very effective and easy to implement is to make

the call to delete intentionally ambiguous. You can achieve this by providing two automatic

conversions to types that are susceptible to a call to delete. One type is T* itself, and the

other can be void*.

07-A1568 01/23/2001 12:38 PM Page 172

Section 7.8 Equality and Inequality 173

template <class T>
class SmartPtr
{
public:

operator T*() // User-defined conversion to T*
{

return pointee_;
}
operator void*() // Added—conversion to void*
{

return pointee_;
}
...

};

A call to delete against such a smart pointer object is ambiguous. The compiler cannot de-

cide which conversion to apply, and the trick above exploits this indecision to good

advantage.

Don’t forget that disabling the delete operator was only a part of the issue. Whether to

provide an automatic conversion to a raw pointer remains an important decision in imple-

menting a smart pointer. It’s too dangerous just to let it in, yet too convenient to rule it out.

The final SmartPtr implementation will give you a choice about that.

However, forbidding implicit conversion does not necessarily mean that any access to

the raw pointer is gone; it is often necessary to gain access to the raw pointer. Therefore, all

smart pointers do provide explicit access to their wrapped pointer via a call to a function,

like this:

void Fun(Something* p);
...
SmartPtr<Something> sp;
Fun(GetImpl(sp)); // OK, explicit conversion always allowed

It’s not whether you can get to the wrapped pointer or not; it’s how easy it is. This may

seem like a minor difference, but it’s actually very important. An implicit conversion hap-

pens without the programmer or the maintainer noticing or even knowing it. An explicit

conversion—as is the call to GetImpl—passes through the mind, the understanding, and

the fingers of the programmer and remains written there for everybody to see it.

Implicit conversion from the smart pointer type to the raw pointer type is desirable,

but sometimes dangerous. SmartPtr provides this implicit conversion as a choice. The de-

fault is on the safe side—no implicit conversions. Explicit access is always available

through the GetImpl function.

7.8 Equality and Inequality

C�� teaches its users that any clever trick like the one presented in the previous sec-

tion (intentional ambiguity) establishes a new context, which in turn may have unexpected

ripples.

Consider tests for equality and inequality of smart pointers. A smart pointer should

07-A1568 01/23/2001 12:38 PM Page 173

174 Smart Pointers Chapter 7

support the full syntax that raw pointers support. Let’s first focus on comparisons against

zero. Programmers expect the following tests to compile and run as they do for a raw

pointer.

SmartPtr<Something> sp1, sp2;
Something* p;
...
if (sp1) // Test 1: direct test for non-null pointer

...
if (!sp1) // Test 2: direct test for null pointer

...
if (sp1 == 0) // Test 3: explicit test for null pointer

...
if (sp1 == sp2) // Test 4: comparison of two smart pointers

...
if (sp1 == p) // Test 5: comparison with a raw pointer

...

There are more tests than depicted here if you consider symmetry and operator!=. If we

solve the equality tests, we can easily define the corresponding symmetric and inequality

tests.

There is an unfortunate interference between the solution to the previous issue (prevent

delete from compiling) and a possible solution to this issue. With one user-defined con-

version to the pointee type, most of the test expressions (except test 4) compile successfully

and run as expected. The downside is that you can accidentally call the delete operator

against the smart pointer. With two user-defined conversions (intentional ambiguity), you

detect wrongful delete calls, but none of these tests compiles anymore—they have be-

come ambiguous too.

An additional user-defined conversion to bool helps, but this, to nobody’s surprise,

introduces new trouble. Given this smart pointer:

template <class T>
class SmartPtr
{
public:

operator bool() const
{

return pointee_ != 0;
}
...

};

the four tests compile, but so do the following nonsensical operations:

SmartPtr<Apple> sp1;
SmartPtr<Orange> sp2; // Orange is unrelated to Apple
if (sp1 == sp2) // Converts both pointers to bool

// and compares results
...

if (sp1 != sp2) // Ditto
...

07-A1568 01/23/2001 12:38 PM Page 174

Section 7.8 Equality and Inequality 175

bool b = sp1; // The conversion allows this, too
if (sp1 * 5 == 200) // Ouch! SmartPtr behaves like an integral

// type!
...

As you can see, it’s either not at all or too much: Once you add a user-defined conver-

sion to bool, you allow SmartPtr to act as a bool in many more situations than you actu-

ally wanted. For all practical purposes, defining an operator bool for a smart pointer is

not a smart solution.

A true, complete, rock-solid solution to this dilemma is to go all the way and overload

each and every operator separately. This way any operation that makes sense for the bare

pointer makes sense for the smart pointer, and nothing else. Here is the code that imple-

ments this idea.

template <class T>
class SmartPtr
{
public:

bool operator!() const // Enables "if (!sp) ..."
{

return pointee_ == 0;
}
inline friend bool operator==(const SmartPtr& lhs,

const T* rhs)
{

return lhs.pointee_ == rhs;
}
inline friend bool operator==(const T* lhs,

const SmartPtr& rhs)
{

return lhs == rhs.pointee_;
}
inline friend bool operator!=(const SmartPtr& lhs,

const T* rhs)
{

return lhs.pointee_ != rhs;
}
inline friend bool operator!=(const T* lhs,

const SmartPtr& rhs)
{

return lhs != rhs.pointee_;
}
...

};

Yes, it’s a pain, but this approach solves the problems with almost all comparisons, in-

cluding the tests against the literal zero. What the forwarding operators in this code do is

to pass operators that client code applies to the smart pointer on to the raw pointer that the

smart pointer wraps. No simulation can be more realistic than that.

We still didn’t solve the problem completely. If you provide an automatic conversion to

07-A1568 01/23/2001 12:38 PM Page 175

176 Smart Pointers Chapter 7

the pointee type, there still is risk of ambiguities. Suppose you have a class Base and a class

Derived that inherits Base. Then the following code makes practical sense yet is ill formed

due to ambiguity.

SmartPtr<Base> sp;
Derived* p;
...
if (sp == p) {} // error! Ambiguity between:

// '(Base*)sp == (Base*)p'
// and 'operator==(sp, (Base*)p)'

Indeed, smart pointer development is not for the faint of heart.

We’re not out of bullets, though. In addition to the definitions of operator== and

operator!=, we can add templated versions of them, as you can see in the following code:

template <class T>
class SmartPtr
{
public:

... as above ...
template <class U>
inline friend bool operator==(const SmartPtr& lhs,

const U* rhs)
{

return lhs.pointee_ == rhs;
}
template <class U>
inline friend bool operator==(const U* lhs,

const SmartPtr& rhs)
{

return lhs == rhs.pointee_;
}
... similarly defined operator!= ...

};

The templated operators are “greedy” in the sense that they match comparisons with any

pointer type whatsoever, thus eating the ambiguity.

If that’s the case, why should we keep the nontemplated operators—the ones that take

the pointee type? They never get a chance to match, because the template matches any

pointer type, including the pointee type itself.

The rule that “never” actually means “almost never” applies here, too. In the test

if (sp == 0), the compiler tries the following matches.

• The templated operators. They don’t match because zero is not a pointer type. A literal

zero can be implicitly converted to a pointer type, but template matching does not in-

clude conversions.

• The nontemplated operators. After eliminating the templated operators, the compiler tries

the nontemplated ones. One of these operators kicks in through an implicit conversion

from the literal zero to the pointee type. Had the nontemplated operators not existed,

the test would have been an error.

07-A1568 01/23/2001 12:38 PM Page 176

Section 7.8 Equality and Inequality 177

In conclusion, we need both the nontemplated and the templated comparison operators.

Let’s see now what happens if we compare two SmartPtrs instantiated with different

types.

SmartPtr<Apple> sp1;
SmartPtr<Orange> sp2;
if (sp1 == sp2)

...

The compiler chokes on the comparison because of an ambiguity: Each of the two SmartPtr
instantiations defines an operator==, and the compiler does not know which one to choose.

We can dodge this problem by defining an “ambiguity buster” as shown:

template <class T>
class SmartPtr
{
public:

// Ambiguity buster
template <class U>
bool operator==(const SmartPtr<U>& rhs) const
{

return pointee_ == rhs.pointee_;
}
// Similarly for operator!=
...

};

This newly added operator is a member that specializes exclusively in comparing

SmartPtr<...> objects. The beauty of this ambiguity buster is that it makes smart pointer

comparisons act like raw pointer comparisons. If you compare two smart pointers to Apple
and Orange, the code will be essentially equivalent to comparing two raw pointers to

Apple and Orange. If the comparison makes sense, then the code compiles; otherwise, it’s a

compile-time error.

SmartPtr<Apple> sp1;
SmartPtr<Orange> sp2;
if (sp1 == sp2) // Semantically equivalent to

// sp1.pointee_ == sp2.pointee_
...

There is one unsatisfied syntactic artifact left, namely, the direct test if (sp). Here life

becomes really interesting. The if statement applies only to expressions of arithmetic and

pointer type. Consequently, to allow if (sp) to compile, we must define an automatic con-

version to either an arithmetic or a pointer type.

A conversion to arithmetic type is not recommended, as the experience with operator
bool earlier witnesses. A pointer is not an arithmetic type, period. A conversion to a

pointer type makes a lot more sense, and here the problem branches.

If you want to provide automatic conversions to the pointee type (see previous section),

then you have two choices: You either risk unattended calls to operator delete, or you

07-A1568 01/23/2001 12:38 PM Page 177

178 Smart Pointers Chapter 7

forgo the if (sp) test. The tiebreaker is between the lack of a convenience and a risky

life. The winner is safety, so you cannot write if (sp). Instead, you can choose between

if(sp != 0) and the more baroque if (!!sp). End of story.

If you don’t want to provide automatic conversions to the pointee type, there is an in-

teresting trick you can do to make if (sp) possible. Inside the SmartPtr class template,

define an inner class Tester and define a conversion to Tester*, as shown in the follow-

ing code:

template <class T>
class SmartPtr
{

class Tester
{

void operator delete(void*);
};

public:
operator Tester*() const
{

if (!pointee_) return 0;
static Tester test;
return &test;

}
...

};

Now if you write if (sp), operator Tester* enters into action. This operator returns

a null value if and only if pointee_ is null. Tester itself disables operator delete, so

if somebody calls delete sp, a compile-time error occurs. Interestingly, Tester’s defini-

tion itself lies in the private part of SmartPtr, so the client code cannot do anything else

with it.

SmartPtr addresses the issue of tests for equality and inequality as follows:

• Define operator== and operator!= in two flavors (templated and nontemplated).

• Define operator!.

• If you allow automatic conversion to the pointee type, then define an additional con-

version to void* to ambiguate a call to the delete operator intentionally; otherwise,

define a private inner class Tester that declares a private operator delete, and define

a conversion to Tester* for SmartPtr that returns a null pointer if and only if the

pointee object is null.

7.9 Ordering Comparisons

The ordering comparison operators are operator<, operator<=, operator>, and

operator>=. You can implement them all in terms of operator<.

Whether to allow ordering of smart pointers is an interesting question in and of itself

and relates to the dual nature of pointers that consistently confuses programmers. Pointers

are two concepts in one: iterators and monikers. The iterative nature of pointers allows you

to walk through an array of objects using a pointer. Pointer arithmetic, including compar-

07-A1568 01/23/2001 12:38 PM Page 178

Section 7.9 Ordering Comparisons 179

isons, supports this iterative nature of pointers. At the same time, pointers are monikers—

inexpensive object representatives that can travel quickly and access the objects in a snap.

The dereferencing operators * and -> support the moniker concept.

The two natures of pointers can be confusing at times, especially when you need only

one of them. For operating with a vector, you might use both iteration and dereferencing,

whereas for walking through a linked list or for manipulating individual objects, you use

only dereferencing.

Ordering comparisons for pointers is defined only when the pointers belong to the

same contiguous memory. In other words, you can use ordering comparisons only for

pointers that point to elements in the same array.

Defining ordering comparisons for smart pointers boils down to this question: Do smart

pointers to the objects in the same array make sense? On the face of it, the answer is no.

Smart pointers’ main feature is to manage object ownership, and objects with separate

ownership do not usually belong to the same array. Therefore, it would be dangerous to al-

low users to make nonsensical comparisons.

If you really need ordering comparisons, you can always use explicit access to the raw

pointer. The issue here is, again, to find the safest and most expressive behavior most of the

time—not any time.

The previous section concludes that an implicit conversion to a raw pointer type is

optional. If SmartPtr’s client chooses to allow implicit conversion, the following code

compiles:

SmartPtr<Something> sp1, sp2;
if (sp1 < sp2) // Converts sp1 and sp2 to raw pointer type,

// then performs the comparison
...

This means that if we want to disable ordering comparisons, we must be proactive, dis-

abling them explicitly. A way of doing this is to declare them and never define them, which

means that any use will trigger a link-time error.

template <class T>
class SmartPtr
{ ... };

template <class T, class U>
bool operator<(const SmartPtr<T>&, const U&); // Not defined
template <class T, class U>
bool operator<(const T&, const SmartPtr<U>&); // Not defined

However, it is wiser to define all other operators in terms of operator<, as opposed to

leaving them undefined. This way, if SmartPtr’s users think it’s best to introduce smart

pointer ordering, they only have to define operator<.

// Ambiguity buster
template <class T, class U>
bool operator<(const SmartPtr<T>& lhs, const SmartPtr<U>& rhs)
{

return lhs < GetImpl(rhs);

07-A1568 01/23/2001 12:38 PM Page 179

180 Smart Pointers Chapter 7

}
// All other operators
template <class T, class U>
bool operator>(SmartPtr<T>& lhs, const U& rhs)
{

return rhs < lhs;
}
... similarly for the other operators ...

Note the presence, again, of an ambiguity buster. Now if some library user thinks that

SmartPtr<Something> should be ordered, the following code is the ticket:

template <class T>
inline bool operator<(const SmartPtr<Something>& lhs,

const T& rhs)
{

return GetImpl(lhs) < lhs;
}

template <class T>
inline bool operator<(const T& lhs,

const SmartPtr<Something>& rhs)
{

return lhs < GetImpl(rhs);
}

It’s a pity that the user must define two operators instead of one, but it’s so much better than

defining eight.

This would conclude the issue of ordering, were it not for an interesting detail. Some-

times it is very useful to have an ordering of arbitrarily located objects, not just objects be-

longing to the same array. For example, you might need to store supplementary per-object

information, and you need to access that information quickly. A map ordered by the ad-

dress of objects is very effective for such a task.

Standard C�� helps in implementing such designs. Although pointer comparison for

arbitrarily located objects is undefined, the standard guarantees that std::less yields

meaningful results for any two pointers of the same type. Because the standard associative

containers use std::less as the default ordering relationship, you can safely use maps that

have pointers as keys.

SmartPtr should support this idiom, too; therefore, SmartPtr specializes std::less.

The specialization simply forwards the call to std::less for regular pointers:

namespace std
{

template <class T>
struct less<SmartPtr<T> >

: public binary_function<SmartPtr<T>, SmartPtr<T>, bool>
{

bool operator()(const SmartPtr<T>& lhs,
const SmartPtr<T>& rhs) const

{
return less<T*>()(GetImpl(lhs), GetImpl(rhs));

}

07-A1568 01/23/2001 12:38 PM Page 180

Section 7.10 Checking and Error Reporting 181

};
}

In summary, SmartPtr does not define ordering operators by default. It declares—

without implementing—two generic operator<s and implements all other ordering oper-

ators in terms of operator<. The user can define either specialized or generic versions of

operator<.

SmartPtr specializes std::less to provide an ordering of arbitrary smart pointer

objects.

7.10 Checking and Error Reporting

Applications need various degrees of safety from smart pointers. Some programs are

computational-intensive and must be optimized for speed, whereas some others (actually,

most) are input/output intensive, which allows better runtime checking without degrad-

ing performance.

Most often, right inside an application, you might need both models: low safety/high

speed in some critical areas, and high safety/lower speed elsewhere.

We can divide checking issues with smart pointers into two categories: initialization

checking and checking before dereference.

7.10.1 Initialization Checking

Should a smart pointer accept the null (zero) value?

A guarantee that a smart pointer cannot be null is easy to implement and may be very

useful in practice. It means that any smart pointer is always valid (unless you fiddle with

the raw pointer by using GetImplRef). The implementation is easy with the help of a con-

structor that throws an exception if passed a null pointer.

template <class T>
class SmartPtr
{
public:

SmartPtr(T* p) : pointee_(p)
{

if (!p) throw NullPointerException();
}
...

};

On the other hand, the null value is a convenient “not a valid pointer” placeholder and can

often be useful.

Whether to allow null values affects the default constructor, too. If the smart pointer

doesn’t allow null values, then how would the default constructor initialize the raw

pointer? The default constructor could be lacking, but that would make smart pointers

harder to deal with. For example, what should you do when you have a SmartPtr member

variable but don’t have an appropriate initializer for it at construction time? In conclusion,

customizing initialization involves providing an appropriate default value.

07-A1568 01/23/2001 12:38 PM Page 181

182 Smart Pointers Chapter 7

4Every once in a while, the question “Why can you apply the delete operator to pointers to const?” starts a

fierce debate in the comp.std.c�� newsgroup. The fact is, for better or worse, the language allows it.

7.10.2 Checking Before Dereference

Checking before dereference is important because dereferencing the null pointer engen-

ders undefined behavior. For many applications, undefined behavior is not acceptable, so

checking the pointer for validity before dereference is the way to go. Checks before de-

reference belong to SmartPtr’s operator-> and unary operator*.

In contrast to the initialization check, the check before dereference can become a major

performance bottleneck in your application, because typical applications use (dereference)

smart pointers much more often than they create smart pointer objects. Therefore, you

should keep a balance between safety and speed. A good rule of thumb is to start with rig-

orously checked pointers and remove checks from selected smart pointers as profiling

demonstrates a need for it.

Can initialization checking and checking before dereference be conceptually separated?

No, because there are links between them. If you enforce strict checking upon initialization,

then checking before dereference becomes redundant because the pointer is always valid.

7.10.3 Error Reporting

The only sensible choice for reporting an error is to throw an exception.

You can do something in the sense of avoiding errors. For example, if a pointer is null

upon dereference, you can initialize it on the fly. This is a valid and valuable strategy called

lazy initialization—you construct the value only when you first need it.

If you want to check things only during debugging, you can use the standard assert or

more sophisticated similar macros. The compiler ignores the tests in release mode, so, as-

suming you remove all null pointer errors during debugging, you reap both the advantage

of checking and that of speed.

SmartPtr migrates checking to a dedicated Checking policy. This policy implements

checking functions (which can optionally provide lazy initialization) and the error report-

ing strategy.

7.11 Smart Pointers to const and const Smart Pointers

Raw pointers allow two kinds of constness: the constness of the pointed-to object and that

of the pointer itself. The following is an illustration of these two attributes:

const Something* pc = new Something; // points to const object
pc->ConstMemberFunction(); // ok
pc->NonConstMemberFunction(); // error
delete pc; // ok (surprisingly) 4

Something* const cp = new Something; // const pointer
cp->NonConstMemberFunction(); // ok
cp = new Something; // error, can't assign to const pointer
const Something* const cpc = new Something; // const, points to const
cpc->ConstMemberFunction(); // ok

07-A1568 01/23/2001 12:38 PM Page 182

Section 7.12 Arrays 183

cpc->NonConstMemberFunction(); // error
cpc = new Something; // error, can't assign to const pointer

The corresponding uses of SmartPtr look like this:

// Smart pointer to const object
SmartPtr<const Something> spc(new Something);
// const smart pointer
const SmartPtr<Something> scp(new Something);
// const smart pointer to const object
const SmartPtr<const Something> scpc(new Something);

The SmartPtr class template can detect the constness of the pointed-to object either

through partial specialization or by using the TypeTraits template defined in Chapter 2.

The latter method is preferable because it does not incur source-code duplication as partial

specialization does.

The implementation of SmartPtr imitates the semantics of pointers to const objects,

const pointers, and the combinations thereof.

7.12 Arrays

In most cases, instead of dealing with heap-allocated arrays and using new[] and delete[],

you’re better off with std::vector. The standard-provided std::vector class template

provides everything that dynamically allocated arrays provide, plus much more. The extra

overhead incurred is negligible in most cases.

However, “most cases” is not “always.” There are many situations in which you don’t

need and don’t want a full-fledged vector; a dynamically allocated array is exactly what

you need. It is awkward in these cases to be unable to exploit smart pointer capabilities.

There is a certain gap between the sophisticated std::vector and dynamically allocated

arrays. Smart pointers could close that gap by providing array semantics if the user

needs them.

From the viewpoint of a smart pointer to an array, the only important issue is to call

delete[] pointee_ in its destructor instead of delete pointee_. This issue is already tack-

led by the Ownership policy.

A secondary issue is providing indexed access, by overloading operator[] for smart

pointers. This is technically feasible; in fact, a preliminary version of SmartPtr did provide

a separate policy for optional array semantics. However, only in very rare cases do smart

pointers point to arrays. In those cases, there already is a way of providing indexed ac-

cessing if you use GetImpl:

SmartPtr<Widget> sp = ...;
// Access the sixth element pointed to by sp
Widget& obj = GetImpl(sp)[5];

It seems like a bad decision to strive for providing extra syntactic convenience at the

expense of introducing a new policy.

SmartPtr supports customized destruction via the Ownership policy. You can therefore

07-A1568 01/23/2001 12:38 PM Page 183

184 Smart Pointers Chapter 7

arrange array-specific destruction via delete[]. However, SmartPtr does not provide

pointer arithmetic.

7.13 Smart Pointers and Multithreading

Most often, smart pointers help with sharing objects. Multithreading issues affect object

sharing. Therefore, multithreading issues affect smart pointers.

The interaction between smart pointers and multithreading takes place at two levels.

One is the pointee object level, and the other is the bookkeeping data level.

7.13.1 Multithreading at the Pointee Object Level

If multiple threads access the same object and if you access that object through a smart

pointer, it can be desirable to lock the object during a function call made through

operator->. This is possible by having the smart pointer return a proxy object instead of a

raw pointer. The proxy object’s constructor locks the pointee object, and its destructor

unlocks it. The technique is illustrated in Stroustrup (2000). Some code that illustrates this

approach is provided here.

First, let’s consider a class Widget that has two locking primitives, Lock and Unlock.

After a call to Lock, you can access the object safely. Any other threads calling Lock will

block. When you call Unlock, you let other threads lock the object.

class Widget
{

...
void Lock();
void Unlock();

};

Next, we define a class template LockingProxy. Its role is to lock an object (using the

Lock/Unlock convention) for the duration of LockingProxy’s lifetime.

template <class T>
class LockingProxy
{
public:

LockingProxy(T* pObj) : pointee_ (pObj)
{ pointee_->Lock(); }
~LockingProxy()
{ pointee_->Unlock(); }
T* operator->() const
{ return pointee_; }

private:
LockingProxy& operator=(const LockingProxy&);
T* pointee_;

};

In addition to the constructor and destructor, LockingProxy defines an operator-> that re-

turns a pointer to the pointee object.

07-A1568 01/23/2001 12:38 PM Page 184

Section 7.13 Smart Pointers and Multithreading 185

Although LockingProxy looks somewhat like a smart pointer, there is one more layer to

it—the SmartPtr class template itself.

template <class T>
class SmartPtr
{

...
LockingProxy<T> operator->() const
{ return LockingProxy<T>(pointee_); }

private:
T* pointee_;

};

Recall from Section 7.3, which explains the mechanics of operator->, that the com-

piler can apply operator-> multiple times to one -> expression, until it reaches a native

pointer. Now imagine you issue the following call (assuming Widget defines a function

DoSomething):

SmartPtr<Widget> sp = ...;
sp->DoSomething();

Here’s the trick: SmartPtr’s operator-> returns a temporary LockingProxy<T> object. The

compiler keeps applying operator->. LockingProxy<T>’s operator-> returns a Widget*.

The compiler uses this pointer to Widget to issue the call to DoSomething. During the call,

the temporary object LockingProxy<T> is alive and locks the object, which means that the

object is safely locked. As soon as the call to DoSomething returns, the temporary Locking-
Proxy<T> object is destroyed, so the Widget object is unlocked.

Automatic locking is a good application of smart pointer layering. You can layer smart

pointers this way by changing the Storage policy.

7.13.2 Multithreading at the Bookkeeping Data Level

Sometimes smart pointers manipulate data in addition to the pointee object. As you just

read in Section 7.5, reference-counted smart pointers share some data—namely the refer-

ence count—under the covers. If you copy a reference-counted smart pointer from one

thread to another, you end up having two smart pointers pointing to the same reference

counter. Of course, they also point to the same pointee object, but that’s accessible to the

user, who can lock it. In contrast, the reference count is not accessible to the user, so man-

aging it is entirely the responsibility of the smart pointer.

Not only reference-counted pointers are exposed to multithreading-related dangers.

Reference-tracked smart pointers (Section 7.5.4) internally hold pointers to each other,

which are shared data as well. Reference linking leads to communities of smart pointers,

not all of which necessarily belong to the same thread. Therefore, every time you copy, as-

sign, and destroy a reference-tracked smart pointer, you must issue appropriate locking;

otherwise, the doubly linked list might get corrupted.

07-A1568 01/23/2001 12:38 PM Page 185

186 Smart Pointers Chapter 7

In conclusion, multithreading issues ultimately affect smart pointers’ implementation.

Let’s see how to address the multithreading issue in reference counting and reference

linking.

7.13.2.1 Multithreaded Reference Counting

If you copy a smart pointer between threads, you end up incrementing the reference count

from different threads at unpredictable times.

As the appendix explains, incrementing a value is not an atomic operation. For incre-

menting and decrementing integral values in a multithreaded environment, you must use

the type ThreadingModel<T>::IntType and the AtomicIncrement and AtomicDecrement
functions.

Here things become a bit tricky. Better said, they become tricky if you want to separate

reference counting from threading.

Policy-based class design prescribes that you decompose a class into elementary be-

havioral elements and confine each of them to a separate template parameter. In an ideal

world, SmartPtr would specify an Ownership policy and a ThreadingModel policy and

would use them both toward a correct implementation.

In the case of multithreaded reference counting, however, things are way too tied to-

gether. For example, the counter must be of type ThreadingModel<T>::IntType. Then,

instead of using operator++ and operator——, you must use AtomicIncrement and Atomic-
Decrement. Threading and reference counting melt together; it is unjustifiably hard to

separate them.

The best thing to do is to incorporate multithreading in the Ownership policy. Then you

can have two implementations: RefCounting and MultiThreadedRefCounting.

7.13.2.2 Multithreaded Reference Linking

Consider the destructor of a reference-linked smart pointer. It likely looks like this:

template <class T>
class SmartPtr
{
public:

~SmartPtr()
{

if (prev_ == next_)
{

delete pointee_;
}
else
{

prev_->next_ = next_;
next_->prev_ = prev_;

}
}
...

private:
T* pointee_;
SmartPtr* prev_;

07-A1568 01/23/2001 12:38 PM Page 186

Section 7.14 Putting It All Together 187

SmartPtr* next_;
};

The code in the destructor performs a classic doubly linked list deletion. To make imple-

mentation simpler and faster, the list is circular—the last node points to the first node. This

way we don’t have to test prev_ and next_ against zero for any smart pointer. A circular

list with only one element has prev_ and next_ equal to this.

If multiple threads destroy smart pointers that are linked to each other, clearly the de-

structor must be atomic (uninterruptible by other threads). Otherwise, another thread can

interrupt the destructor of a SmartPtr, for instance, between updating prev_->next_ and

updating next_->prev_. That thread will then operate on a corrupt list.

Similar reasoning applies to SmartPtr’s copy constructor and the assignment operator.

These functions must be atomic because they manipulate the ownership list.

Interestingly enough, we cannot apply object-level locking semantics here. The ap-

pendix divides locking strategies into class-level and object-level strategies. A class-level

locking operation locks all objects in a given class during that operation. An object-level

locking operation locks only the object that’s subject to that operation. The former tech-

nique leads to less memory being occupied (only one mutex per class) but is exposed to

performance bottlenecks. The latter is heavier in size (one mutex per object) but might be

speedier.

We cannot apply object-level locking to smart pointers because an operation manipu-

lates up to three objects: the current object that’s being added or removed, the previous ob-

ject, and the next object in the ownership list.

If we want to introduce object-level locking, the starting observation is that there must

be one mutex per pointee object—because there’s one list per pointee object. We can dy-

namically allocate a mutex for each object, but this nullifies the main advantage of reference

linking over reference counting. Reference linking was more appealing exactly because it

didn’t use the free store.

Alternatively, we can use an intrusive approach: The pointee object holds the mu-

tex, and the smart pointer manipulates that mutex. But the existence of a sound, effective

alternative—reference-counted smart pointers—removes the incentive to provide this

feature.

In summary, smart pointers that use reference counting or reference linking are

affected by multithreading issues. Thread-safe reference counting needs integer atomic op-

erations. Thread-safe reference linking needs mutexes. SmartPtr provides only thread-safe

reference counting.

7.14 Putting It All Together

Not much to go! Here comes the fun part. So far we have treated each issue in isolation. It’s

now time to collect all the decisions into a unique SmartPtr implementation.

The strategy we’ll use is the one described in Chapter 1: policy-based class design. Each

design aspect that doesn’t have a unique solution migrates to a policy. The SmartPtr class

template accepts each policy as a separate template parameter. SmartPtr inherits all these

template parameters, allowing the corresponding policies to store state.

07-A1568 01/23/2001 12:38 PM Page 187

188 Smart Pointers Chapter 7

Let’s recap the previous sections by enumerating the variation points of SmartPtr. Each

variation point translates into a policy.

• Storage policy (Section 7.3). By default, the stored type is T* (T is the first template pa-

rameter of SmartPtr), the pointer type is again T*, and the reference type is T&. The

means of destroying the pointee object is the delete operator.

• Ownership policy (Section 7.5). Popular implementations are deep copy, reference count-

ing, reference linking, and destructive copy. Note that Ownership is not concerned with

the mechanics of destruction itself; this is Storage’s task. Ownership controls the moment
of destruction.

• Conversion policy (Section 7.7). Some applications need automatic conversion to the un-

derlying raw pointer type; others do not.

• Checking policy (Section 7.10). This policy controls whether an initializer for SmartPtr is

valid and whether a SmartPtr is valid for dereferencing.

Other issues are not worth dedicating separate policies to them or have an optimal

solution:

• The address-of operator (Section 7.6) is best not overloaded.

• Equality and inequality tests are handled with the tricks shown in Section 7.8.

• Ordering comparisons (Section 7.9) are left unimplemented; however, Loki specializes

std::less for SmartPtr objects. The user may define an operator<, and Loki helps by

defining all other ordering comparisons in terms of operator<.

• Loki defines const-correct implementations for the SmartPtr object, the pointee object,

or both.

• There is no special support for arrays, but one of the Storage canned implementations

can dispose of arrays by using operator delete[].

The presentation of the design issues surrounding smart pointers made these issues

easier to understand and more manageable because each issue was discussed in isolation.

It would be very helpful, then, if the implementation could decompose and treat issues in

isolation instead of fighting with all the complexity at once.

Divide et Impera— this old principle coined by Julius Caesar can be of help even today

with smart pointers. (I’d bet money he hadn’t predicted that.) We break the problem into

small component classes, called policies. Each policy class deals with exactly one issue.

SmartPtr inherits all these classes, thus inheriting all their features. It’s that simple—yet in-

credibly flexible, as you will soon see. Each policy is also a template parameter, which

means you can mix and match existing stock policy classes or build your own.

The pointed-to type comes first, followed by each of the policies. Here is the resulting

declaration of SmartPtr:

template
<

typename T,
template <class> class OwnershipPolicy = RefCounted,
class ConversionPolicy = DisallowConversion,

07-A1568 01/23/2001 12:38 PM Page 188

Section 7.14 Putting It All Together 189

template <class> class CheckingPolicy = AssertCheck,
template <class> class StoragePolicy = DefaultSPStorage

>
class SmartPtr;

The order in which the policies appear in SmartPtr’s declaration puts the ones that you cus-

tomize most often at the top.

The four following subsections discuss the requirements of the four policies we defined.

A rule for all policies is that they must have value semantics; that is, they must define a

proper copy constructor and assignment operator.

7.14.1 The Storage Policy

The Storage policy abstracts the structure of the smart pointer. It provides type definitions

and stores the actual pointee_ object.

If StorageImpl is an implementation of the Storage policy and storageImpl is an object

of type StorageImpl<T>, then the constructs in Table 7.1 apply.

Here is the default Storage policy implementation:

template <class T>
struct DefaultSPStorage
{
protected:

typedef T* StoredType;
typedef T* PointerType;
typedef T& ReferenceType;

public:
DefaultSPStorage(StoredType p) : pointee_(p) {}
PointerType operator->() { return pointee_; }
ReferenceType operator*() { return pointee_; }

protected:
void Release()
{

delete pointee_;
}

private:
T* pointee_;

};

In addition to DefaultSPStorage, Loki also defines the following:

• ArrayStorage, which uses operator delete[] inside Release
• LockedStorage, which uses layering to provide a smart pointer that locks data while

dereferenced (see Section 7.13.1)

• HeapStorage, which uses an explicit destructor call followed by std::free to release

the data

07-A1568 01/23/2001 12:38 PM Page 189

190 Smart Pointers Chapter 7

Table 7.1: Storage Policy Constructs

Expression Semantics

StorageImpl<T>::StoredType The type actually stored by the

implementation. Default: T*.

StorageImpl<T>::PointerType The pointer type defined by implementation.

This is the type returned by SmartPtr’s

operator->. Default: T*. Can be different

from StorageImpl<T>::StoredType
when using smart pointer layering

(see Sections 7.3, 7.13.1).

StorageImpl<T>::ReferenceType The reference type. This is the type returned

by SmartPtr’s operator*. Default: T&.

GetImpl(storageImpl) Returns an object of type StorageImpl<T>-
::StoredType.

GetImplRef(storageImpl) Returns an object of type StorageImpl<T>-
::StoredType&, qualified with const if

storageImpl is const.

storageImpl.operator->() Returns an object of type StorageImpl<T>-
::PointerType. Used by SmartPtr’s

own operator->.

storageImpl.operator*() Returns an object of type StorageImpl<T>-
::ReferenceType. Used by SmartPtr’s

own operator*.

StorageImpl<T>::StoredType p; Returns the default value (usually zero).

p = storageImpl.Default();

storageImpl.Destroy() Destroys the pointee object.

7.14.2 The Ownership Policy

The Ownership policy must support intrusive as well as nonintrusive reference counting.

Therefore, it uses explicit function calls rather than constructor/destructor techniques, as

Koenig (1996) does. The reason is that you can call member functions at any time, whereas

constructors and destructors are called automatically and only at specific times.

The Ownership policy implementation takes one template parameter, which is the cor-

responding pointer type. SmartPtr passes StoragePolicy<T>::PointerType to Ownership-
Policy. Note that OwnershipPolicy’s template parameter is a pointer type, not an object

type.

If OwnershipImpl is an implementation of Ownership and ownershipImpl is an object of

type OwnershipImpl<P>, then the constructs in Table 7.2 apply.

07-A1568 01/23/2001 12:38 PM Page 190

Section 7.14 Putting It All Together 191

Table 7.2: Ownership Policy Constructs

Expression Semantics

P val1; Clones an object. It can modify the source

P val2; = OwnershipImplImpl. value if OwnershipImpl uses destructive

Clone(val1); copy.

const P val1; Clones an object.

P val2 = ownershipImpl.
Clone(val1);

P val; Releases ownership of an object.

ownershipImpl Release(val);

P val; Tests whether a value is uniquely referred. If

bool unique = ownershipImpl. IsUnique returns true, then SmartPtr’s

IsUnique(val); destructor fires the Destroy member

function of the Storage policy.

bool dc = OwnershipImpl<P> States whether OwnershipImpl uses

::destructiveCopy; destructive copy. If that’s the case,

SmartPtr uses the Colvin/Gibbons trick

(Meyers 1999) used in std::auto_ptr.

An implementation of Ownership that supports reference counting is shown in the

following:

template <class P>
class RefCounted
{

unsigned int*pCount_;
protected:

RefCounted() : pCount_(new unsigned int(1)) {}
bool IsUnique const
{

return *pCount_ == 1;
}
P Clone(const P & val)
{

++*pCount_;
return val;

}
void Release(const P&)
{

if (!—*pCount_) delete pCount_;
}
enum { destructiveCopy = false }; // see below

};

07-A1568 01/23/2001 12:38 PM Page 191

192 Smart Pointers Chapter 7

Implementing a policy for reference counting is very easy. Let’s write an Ownership
policy implementation for COM objects. COM objects have two functions, AddRef and

Release. Upon the last Release call, the object destroys itself. You only have to direct Clone
to AddRef and Release to COM’s Release:

template <class P>
class COMRefCounted
{
protected:

static bool IsUnique()const
{

return false;
}
static P Clone(const P & val)
{

val->AddRef();
return val;

}
static void Release(const P&)
{

val->Release();
}
enum { destructiveCopy = false }; // see below

};

Loki defines the following Ownership implementations:

• DeepCopy, described in Section 7.5.1. DeepCopy assumes the pointee class implements a

member function Clone.

• RefCounted, described in Section 7.5.3 and in this section.

• RefCountedMT, a multithreaded version of RefCounted.

• COMRefCounted, a variant of intrusive reference counting described in this section.

• RefLinked, described in Section 7.5.4.

• DestructiveCopy, described in Section 7.5.5.

• NoCopy, which does not define Clone, thus disabling any form of copying.

7.14.3 The Conversion Policy

Conversion is a simple policy: It defines a Boolean compile-time constant that says whether

SmartPtr allows implicit conversion to the underlying pointer type or not.

If ConversionImpl is an implementation of Conversion, then the construct in Table 7.3

applies.

The underlying pointer type of SmartPtr is dictated by its Storage policy and is

StorageImpl<T>::PointerType.

As you would expect, Loki defines precisely two Conversion implementations:

• AllowConversion
• DisallowConversion

07-A1568 01/23/2001 12:38 PM Page 192

Section 7.14 Putting It All Together 193

Table 7.3: Conversion Policy Construct

Expression Semantics

bool allowConv = If allow is true, SmartPtr allows implicit

ConversionImpl<P>::allow; conversion to its underlying pointer type.

7.14.4 The Checking Policy

As discussed in Section 7.10, there are two main places to check a SmartPtr object for

consistency: during initialization and before dereference. The checks themselves might use

assert, exception, or lazy initialization or not do anything at all.

The Checking policy operates on the StoredType of the Storage policy, not on the

PointerType. (See Section 7.14.1 for the definition of Storage.)

If S is the stored type as defined by the Storage policy implementation, CheckingImpl
is an implementation of Checking, and checkingImpl is an object of type CheckingImpl<S>,

then the constructs in Table 7.4 apply.

Loki defines the following implementations of Checking:

• AssertCheck, which uses assert for checking the value before dereferencing.

• AssertCheckStrict, which uses assert for checking the value upon initialization.

• RejectNullStatic, which does not define OnDefault. Consequently, any use of Smart-
Ptr’s default constructor yields a compile-time error.

Table 7.4: Checking Policy Constructs

Expression Semantics

S value; SmartPtr calls OnDefault in the default

checkingImpl.OnDefault(value); constructor call. If CheckingImpl does

not define this function, it disables the

default constructor at compile time.

S value; SmartPtr calls OnInit upon a

checkingImpl.OnInit(value); constructor call.

S value; SmartPtr calls OnDereference before

checkingImpl.OnDereference returning from operator-> and

(value); operator*.

const S value; SmartPtr calls OnDereference before

checkingImpl.OnDereference returning from the const versions of

(value); operator-> and operator*.

07-A1568 01/23/2001 12:38 PM Page 193

194 Smart Pointers Chapter 7

• RejectNull, which throws an exception if you try to dereference a null pointer.

• RejectNullStrict, which does not accept null pointers as initializers (again, by throw-

ing an exception).

• NoCheck, which handles errors in the grand C and C�� tradition—that is, it does no

checking at all.

7.15 Summary

Congratulations! You have just read one of the longest, wildest chapters of this book—an

effort that it is hoped paid off. Now you know a lot of things about smart pointers and are

equipped with a pretty comprehensive and configurable SmartPtr class template.

Smart pointers imitate built-in pointers in syntax and semantics. In addition, they per-

form a host of tasks that built-in pointers cannot. These tasks might include ownership

management and checking against invalid values.

Smart pointer concepts go beyond actual pointer behavior; they can be generalized into

smart resources, such as monikers (handles that don’t have pointer syntax, yet resemble

pointer behavior in the way they enable resource access).

Because they nicely automate things that are very hard to manage by hand, smart point-

ers are an essential ingredient of successful, robust applications. As small as they are, they

can make the difference between a successful project and a failure— or, more often, be-

tween a correct program and one that leaks resources like a sieve.

That’s why a smart pointer implementer should invest as much attention and effort in

this task as possible; the investment is likely to pay in the long term. Similarly, smart

pointer users should understand the conventions that smart pointers establish and use

them in accordance with those conventions.

The presented implementation of smart pointers focuses on decomposing the areas of

functionality into independent policies that the main class template SmartPtr mixes and

matches. This is possible because each policy implements a well-defined interface.

7.16 SmartPtr Quick Facts

• SmartPtr declaration:

template
<

typename T,
template <class> class OwnershipPolicy = RefCounted,
class ConversionPolicy = DisallowConversion,
template <class> class CheckingPolicy = AssertCheck,
template <class> class StoragePolicy = DefaultSPStorage

>
class SmartPtr;

• T is the type to which SmartPtr points. T can be a primitive type or a user-defined type.

The void type is allowed.

• For the remaining class template parameters (OwnershipPolicy, ConversionPolicy,

CheckingPolicy, and StoragePolicy), you can implement your own policies or choose

from the defaults mentioned in Sections 7.14.1 through 7.14.4.

07-A1568 01/23/2001 12:38 PM Page 194

Section 7.1 SmartPtr Quick Facts 195

• OwnershipPolicy controls the ownership management strategy. You can select from the

predefined classes DeepCopy, RefCounted, RefCountedMT, COMRefCounted, RefLinked,

DestructiveCopy, and NoCopy, described in Section 7.14.2.

• ConversionPolicy controls whether implicit conversion to the pointee type is allowed

or not. The default is to forbid implicit conversion. Either way, you can still access the

pointee object by calling GetImpl. You can use the AllowConversion and Disallow-
Conversion implementations (Section 7.14.3).

• CheckingPolicy defines the error checking strategy. The defaults provided are Assert-
Check, AssertCheckStrict, RejectNullStatic, RejectNull, RejectNullStrict, and

NoCheck (Section 7.14.4).

• StoragePolicy defines the details of how the pointee object is stored and accessed. The

default is DefaultSPStorage, which, when instantiated with a type T, defines the refer-

ence type as T&, the stored type as T*, and the type returned from operator-> as T*
again. Other storage types defined by Loki are ArrayStorage, LockedStorage, and

HeapStorage (Section 7.14.1).

07-A1568 01/23/2001 12:38 PM Page 195

